Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Dimeric copper(II) trimethylsilylacetate adducts with pyridine, 2-methylpyridine, 3-methylpyridine and quinoline, and a polymeric copper(II) trimethylsilylacetate

Hiroo Nakagawa, ${ }^{\text {a }}$ Yoshiyuki Kani, ${ }^{\text {a }}$ Masanobu Tsuchimoto, ${ }^{\text {a }}$ Shigeru Ohba, ${ }^{\text {a }}$ Hideaki Matsushima ${ }^{\text {b }}$ and Tadashi Tokii ${ }^{\text {b }}$
${ }^{\text {a Department of Chemistry, Faculty of Science and Technology, Keio University, }}$ Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan, and ${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
Correspondence e-mail: ohba@chem.keio.ac.jp

Received 8 June 1999
Accepted 22 September 1999

In the crystals of bis(pyridine- N)tetrakis (μ-trimethylsilylace-tato- $\left.O: O^{\prime}\right)$ dicopper(II), $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{Si}\right)_{4}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$, (I), the dinuclear $\mathrm{Cu}^{\mathrm{II}}$ complexes have cage structures with $\mathrm{Cu} \cdots \mathrm{Cu}$ distances of 2.632 (1) and 2.635 (1) \AA. In the crystals of bis-(2-methylpyridine- N)tetrakis (μ-trimethylsilylacetato- $O: O^{\prime}$)dicopper(II), $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{Si}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]\right.$, (II), bis(3-methyl-pyridine- N)tetrakis (μ-trimethylsilylacetato- $O: O^{\prime}$)dicopper(II), $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{Si}_{4}\right)_{4}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$, (III), and bis(quinoline- N)(μ-trimethylsilylacetato- $O: O^{\prime}$) dicopper(II), $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{Si}^{2}\right)_{4}\right.$ $\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)_{2}$], (IV), the centrosymmetric dinuclear $\mathrm{Cu}^{\text {II }}$ complexes have a cage structure with $\mathrm{Cu} \cdot \mathrm{Cu}$ distances of 2.664 (1), 2.638 (3) and 2.665 (1) \AA, respectively. In the crystals of catena-poly[tetrakis $\left(\mu\right.$-trimethylsilylacetato- $\left.O: O^{\prime}\right)$ dicopper(II)], $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{Si}_{4}\right]_{n},(\mathrm{~V})\right.$, the dinuclear $\mathrm{Cu}^{\text {II }}$ units of a cage structure are linked by the cyclic $\mathrm{Cu}-\mathrm{O}$ bonds at the apical positions to form a linear chain by use of a glide translation.

Comment

The $-2 J$ values of copper(II) carboxylates, i.e. the singlet-triplet energy separation, greatly depend on the kind of atom directly bonded to the COO bridge (Kato \& Muto, 1988). There is a correlation between the electron density at the central C atom of the COO bridge and the antiferromagnetic spin-exchange interaction (Yamanaka et al., 1991; Harada et al., 1997). Silanecarboxylatocopper complexes show very large $-2 J$ values due to the σ-electron donating
character of the Si atom; for $\left[\mathrm{Cu}_{2}\left(\mathrm{PhMe}_{2} \mathrm{SiCOO}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, $-2 J=1000 \pm 150 \mathrm{~cm}^{-1}$ (Steward et al., 1986). In (I)-(IV), an Si atom is bonded to the α-carbon of the carboxylate ions. Their $-2 J$ values were determined to be (I) 323 , (II) 334 , (III) 322 and (IV) $333 \mathrm{~cm}^{-1}\left(H=-2 J S_{1} S_{2}\right)$. These $-2 J$ values are slightly smaller than those of trimethylacetatocopper complexes ($-2 J \sim 356 \mathrm{~cm}^{-1}$; Goto et al., 2000). In conclusion, the electronic influence of the Si atom on the spin-exchange interaction is very small if the Si atom is not bonded directly to the carboxylate ion.

$\left.\begin{array}{rl}\text { (I) } R & =\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N} \\ \text { (II) } R & =o-\mathrm{Me}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\end{array}\right\}$ Ligands are
$\left.\begin{array}{rl}\text { (II) } R & =o-\mathrm{Me}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N} \\ \text { (III) } R & =m-\mathrm{Me}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\end{array}\right\} \begin{aligned} & \text { Ligands are } \\ & \text { N-coordinated }\end{aligned}$
(IV) $R=\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}$

(V)

The complexes (I)-(V) (Figs. 1-5) lie about inversion centres. The trimethylsilyl groups are arranged to have approximately fourfold rotational symmetry along the $\mathrm{Cu} \cdots \mathrm{Cu}$ axis. Displacement ellipsoids of the terminal methylC atoms are large, indicating librational and rotational disorder. In (I)-(IV), the geometry around the Cu atoms is a typical square-pyramidal coordination, and the $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ bond angle between the bridges opposite each other is in the narrow range 166.9 (1) to 168.7 (2) ${ }^{\circ}$.

On the other hand, complex (V) (Fig. 5) has a polymeric structure generated by a glide translation and the Cu atoms have a distorted trigonal-bipyramidal coordination geometry with $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ bond angles of $178.0(3)-178.5$ (3) ${ }^{\circ}$ and 158.0 (3)-159.0 (3). The $\mathrm{Cu}-\mathrm{O}-\mathrm{Cu}\left(x-\frac{1}{2}, \frac{1}{2}-y, z\right)$ bond angles in the polymer chain of (V) are 100.7 (2) and 101.3 (2) ${ }^{\circ}$. In the April 1999 release of the CSD (Cambridge Structural Database, 1999), the number of entries for polymeric copper carboxylates was 14 , and the $\mathrm{Cu}-\mathrm{O}-\mathrm{Cu}$ angles range from 98.2 to 109.3°.

Polymeric copper carboxylates are essentially antiferromagnetic, although the spin-spin interaction through the $\mathrm{Cu}-\mathrm{O}-\mathrm{Cu}$ bonds is ferromagnetic. The $-2 J$ values are generally much less than those of dimeric complexes (Muto et

Figure 1
The molecular structures of (I); (a) and (b) show the two independent molecules. Displacement ellipsoids are plotted at the 50% probability level and H atoms are shown as spheres of arbitrary radii.
al., 1985). This may be due to a trigonal bipyramidal deformation of the cage structure, in accord with the magnetostructure correlations established in the study on the dimeric copper(II) trichloroacetates (Uekusa et al., 1992).

Figure 2
The molecular structure of (II) with displacement ellipsoids at the 50% probability level. The 2-methylpyridine ligand has an orientational disorder, and one of two possible orientations is shown. H atoms are shown as spheres of arbitrary radii.

Figure 3
The molecular structure of (III) with displacement ellipsoids at the 50% probability level. H atoms are shown as spheres of arbitrary radii.

Figure 4
The molecular structure of (IV) with displacement ellipsoids at the 50% probability level. H atoms are shown as spheres of arbitrary radii.

Figure 5
The linear chain structure of (V) with displacement ellipsoids at the 50% probability level. Methyl groups of the trimethylsilylacetato ligands and H atoms are omitted for clarity.

Experimental

Trimethylsilylacetic acid ($132 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}$. $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{mg}, 0.25 \mathrm{mmol})$ were suspended in a mixture of water and methanol ($3: 1,20 \mathrm{ml}$). After the solution was stirred for 1 h at room temperature, a green precipitate was collected and dissolved in ethanol. When pyridine ($40 \mathrm{mg}, 0.50 \mathrm{mmol}$) was added to the solution, the colour changed from green to blue, and from the solution, green crystals of (I) were grown by slow evaporation. Crystals of (II), (III) and (IV) were prepared in a similar way using 2-methylpyridine, 3-methylpyridine and quinoline as axial ligands. When these monodentate ligands were not introduced and the ethanol solution was kept in a desiccator, small blue-green crystals of polymer (V) were
obtained together with pale-green plate-like crystals of a tetranuclear complex, $\left[\mathrm{Cu}_{2}\left(\mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{COO}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}$: monoclinic, $P 2_{1} / n$, $a=$ $12.697(5), b=12.085$ (5), $c=22.609$ (3) $\AA, \beta=94.30(2)^{\circ}, V=$ $3459(2) \AA^{3}, Z=2$.

Compound (I)

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{Si}\right)_{4}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$	$Z=2$
$M_{r}=810.20$	$D_{x}=1.239 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=11.392$ (1) Å	Cell parameters from 25
$b=18.508$ (2) \AA	reflections
$c=10.851$ (1) \AA	$\theta=10-15^{\circ}$
$\alpha=91.87$ (1) ${ }^{\circ}$	$\mu=1.131 \mathrm{~mm}^{-1}$
$\beta=102.79$ (1) ${ }^{\circ}$	$T=299 \mathrm{~K}$
$\gamma=76.82$ (1) ${ }^{\circ}$	Prism, green
$V=2171.9(5) \AA^{3}$	$0.4 \times 0.3 \times 0.3 \mathrm{~mm}$
Data collection	
Rigaku AFC-5 diffractometer	$R_{\text {int }}=0.017$
$\theta-2 \theta$ scans	$\theta_{\text {max }}=27.5^{\circ}$
Absorption correction: by integra-	$h=0 \rightarrow 15$
tion (Coppens et al., 1965)	$k=-24 \rightarrow 24$
$T_{\text {min }}=0.971, T_{\text {max }}=0.978$	$l=-14 \rightarrow 14$
10462 measured reflections	3 standard reflections
9960 independent reflections	every 100 reflections
5122 reflections with $\left\|F_{o}\right\|>3 \sigma\left(\left\|F_{o}\right\|\right)$	intensity decay: none

Refinement

Refinement on F
$R=0.068$
$w R=0.053$
$S=1.34$
5122 reflections
415 parameters

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I).

$\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$2.632(1)$	$\mathrm{Cu} 2-\mathrm{O} 14^{\mathrm{ii}}$	
$\mathrm{Cu} 1-\mathrm{O} 7$	$1.962(4)$	$\mathrm{Cu} 2-\mathrm{N} 16$	$1.972(4)$
$\mathrm{Cu} 1-\mathrm{O} 8^{\mathrm{i}}$	$1.961(4)$	$\mathrm{O} 7-\mathrm{C} 17$	$2.198(6)$
$\mathrm{Cu} 1-\mathrm{O} 9$	$1.982(4)$	$\mathrm{O} 8-\mathrm{C} 17$	$1.263(7)$
$\mathrm{Cu} 1-\mathrm{O} 10^{\mathrm{i}}$	$1.972(4)$	$\mathrm{O} 9-\mathrm{C} 22$	$1.276(7)$
$\mathrm{Cu} 1-\mathrm{N} 15$	$2.194(5)$	$\mathrm{O} 10-\mathrm{C} 22$	$1.255(7)$
$\mathrm{Cu} 2-\mathrm{Cu} 2^{\mathrm{ii}}$	$2.635(1)$	$\mathrm{O} 11-\mathrm{C} 32$	$1.268(7)$
$\mathrm{Cu} 2-\mathrm{O} 11$	$1.961(4)$	$\mathrm{O} 12-\mathrm{C} 32$	$1.252(10)$
$\mathrm{Cu} 2-\mathrm{O} 12^{\mathrm{ii}}$	$1.965(4)$	$\mathrm{O} 13-\mathrm{C} 37$	$1.271(8)$
$\mathrm{Cu} 2-\mathrm{O} 13$	$1.959(4)$	$\mathrm{O} 14-\mathrm{C} 37$	$1.276(8)$
			$1.258(8)$
$\mathrm{O} 7-\mathrm{Cu} 1-\mathrm{O} 8^{\mathrm{i}}$	$168.3(2)$	$\mathrm{O} 7-\mathrm{C} 17-\mathrm{O} 8$	
$\mathrm{O} 9-\mathrm{Cu} 1-\mathrm{O} 10^{\mathrm{i}}$	$1688(2)$	$\mathrm{O} 9-\mathrm{C} 22-\mathrm{O} 10$	$123.6(6)$
$\mathrm{O} 11-\mathrm{Cu} 2-\mathrm{O} 12^{\mathrm{ii}}$	$168.3(2)$	$\mathrm{O} 11-\mathrm{C} 32-\mathrm{O} 12$	$125.5(5)$
$\mathrm{O} 13-\mathrm{Cu} 2-\mathrm{O} 14^{\mathrm{ii}}$	$168.5(2)$	$\mathrm{O} 13-\mathrm{C} 37-\mathrm{O} 14$	$125.0(6)$

Symmetry codes: (i) $2-x, 1-y, 2-z$; (ii) $1-x, 2-y, 1-z$.

Compound (II)

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{Si}\right)_{4}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$	$Z=1$
$M_{r}=838.26$	$D_{x}=1.199 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=10.874(2) \AA$	Cell parameters from 25
$b=11.508(2) \AA$	reflections
$c=10.330(2) \AA$	$\theta=10-15^{\circ}$
$\alpha=104.26(2)^{\circ}$	$\mu=1.060 \mathrm{~mm}^{-1}$
$\beta=109.10(2)^{\circ}$	$T=298 \mathrm{~K}$
$\gamma=74.91(2)^{\circ}$	Plate-like, green
$V=1160.9(4) \AA^{\circ}$	$0.5 \times 0.5 \times 0.2 \mathrm{~mm}$

Data collection

Rigaku AFC-7R diffractometer $\theta-2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.567, T_{\text {max }}=0.809$
8822 measured reflections
8412 independent reflections 5169 reflections with $I>1.5 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.009 \\
& \theta_{\max }=32.5^{\circ} \\
& h=-16 \rightarrow 16 \\
& k=-17 \rightarrow 17 \\
& l=-15 \rightarrow 0 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 150 \text { reflections } \\
& \quad \text { intensity decay: } 10.1 \%
\end{aligned}
$$

Refinement

Refinement on F
$R=0.051$
$w R=0.079$
$S=1.39$
5352 reflections
253 parameters

H -atom parameters not refined
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.00181\left|F_{o}\right|^{2}\right]$
$(\Delta / \sigma)_{\text {max }}=0.03$
$\Delta \rho_{\text {max }}=0.45 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\min }=-0.32 \mathrm{e}^{\AA^{-3}}$

Table 2
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$ for (II).

$\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$2.664(1)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$2.244(3)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$1.977(2)$	$\mathrm{O} 1-\mathrm{C} 1$	$1.243(4)$
$\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$	$1.960(2)$	$\mathrm{O} 2-\mathrm{C} 1$	$1.261(4)$
$\mathrm{Cu} 1-\mathrm{O} 3$	$1.953(2)$	$\mathrm{O} 3-\mathrm{C} 6$	$1.264(4)$
$\mathrm{Cu} 1-\mathrm{O} 4^{\mathrm{i}}$	$1.965(2)$	$\mathrm{O} 4-\mathrm{C} 6$	$1.254(4)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$	$167.1(1)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$125.4(3)$
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 4^{\mathrm{i}}$	$167.2(1)$	$\mathrm{O} 3-\mathrm{C} 6-\mathrm{O} 4$	$124.8(3)$

Symmetry code: (i) $-x,-y,-2-z$.

Compound (III)

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{Si}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]\right.$	$Z=1$
$M_{r}=838.26$	$D_{x}=1.220 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=11.148(3) \AA$	Cell parameters from 25
$b=11.755(1) \AA$	reflections
$c=10.563(3) \AA$	$\theta=10-15^{\circ}$
$\alpha=110.91(1)^{\circ}$	$\mu=1.078 \mathrm{~mm}^{-1}$
$\beta=117.70(2)^{\circ}$	$T=297 \mathrm{~K}$
$\gamma=84.23(2)^{\circ}$	Plate-like, light green
$V=1141.3(5) \AA^{\circ}$	$0.4 \times 0.3 \times 0.1 \mathrm{~mm}$
Data collection	
Rigaku AFC-5 diffractometer	$R_{\text {int }}=0.017$
$\theta-2 \theta$ scans	$\theta_{\text {max }}=27.5^{\circ}$
Absorption correction: by integra-	$h=0 \rightarrow 14$
\quad tion (Coppens et al., 1965$)$	$k=-15 \rightarrow 15$
$T_{\text {min }}=0.676, T_{\text {max }}=0.893$	$l=-14 \rightarrow 14$
5532 measured reflections	3 standard reflections
5261 independent reflections	every 100 reflections
3377 reflections with $\left\|F_{o}\right\|>3 \sigma\left(\left\|F_{o}\right\|\right)$	intensity decay: none

Table 3
Selected geometric parameters ($\left(\AA{ }^{\circ}\right.$) for (III).

$\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$2.638(3)$	$\mathrm{Cu} 1-\mathrm{N} 8$	$2.176(3)$
$\mathrm{Cu} 1-\mathrm{O} 4$	$1.971(3)$	$\mathrm{O} 4-\mathrm{C} 9$	$1.273(5)$
$\mathrm{Cu} 1-\mathrm{O} 5^{\mathrm{i}}$	$1.958(3)$	$\mathrm{O} 5-\mathrm{C} 9$	$1.240(5)$
$\mathrm{Cu} 1-\mathrm{O} 6$	$1.976(3)$	$\mathrm{O} 6-\mathrm{C} 14$	$1.249(4)$
$\mathrm{Cu} 1-\mathrm{O} 7^{\mathrm{i}}$	$1.973(3)$	$\mathrm{O} 7-\mathrm{C} 14$	$1.267(5)$
$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{O} 5^{\mathrm{i}}$	$168.2(2)$	$\mathrm{O} 4-\mathrm{C} 9-\mathrm{O} 5$	$125.5(4)$
$\mathrm{O} 6-\mathrm{Cu} 1-\mathrm{O} 7^{\mathrm{i}}$	$168.1(1)$	$\mathrm{O} 6-\mathrm{C} 14-\mathrm{O} 7$	$125.3(4)$

Symmetry code: (i) $2-x,-y, 1-z$.

Refinement

Refinement on F
$R=0.064$
$w R=0.054$
$S=1.23$
3377 reflections
217 parameters

Compound (IV)

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{Si}\right)_{4}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$	$Z=1$
$M_{r}=910.32$	$D_{x}=1.260 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=11.298(2) \AA$	Cell parameters from 25
$b=11.495(3) \AA$	reflections
$c=10.261(3) \AA$	$\theta=10-15^{\circ}$
$\alpha=104.03(2)^{\circ}$	$\mu=1.032 \mathrm{~mm}^{\circ}$
$\beta=110.10(2)^{\circ}$	$T=298 \mathrm{~K}$
$\gamma=76.99(2)^{\circ}$	Plate-like, dark green
$V=1199.4(5) \AA^{3}$	$0.8 \times 0.4 \times 0.1 \mathrm{~mm}$
Data collection	
Rigaku AFC- $7 R$ diffractometer	$R_{\text {int }}=0.040$
$\theta-2 \theta$ scans	$\theta_{\text {max }}=32.5^{\circ}$
Absorption correction: by integra-	$h=-17 \rightarrow 17$
tion (Coppens et al., 1965)	$k=-17 \rightarrow 17$
$T_{\text {min }}=0.659, T_{\text {max }}=0.902$	$l=-16 \rightarrow 0$
9728 measured reflections	3 standard reflections
8692 independent reflections	every 150 reflections
6024 reflections with $I>1.5 \sigma(I)$	intensity decay: 2.2%

Refinement

Refinement on $F \quad \mathrm{H}$-atom parameters not refined
$R=0.048$
$w R=0.069$
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.00181\left|F_{o}\right|^{2}\right]$
$S=1.18$
$(\Delta / \sigma)_{\text {max }}=0.004$
6191 reflections
244 parameters
$\Delta \rho_{\text {max }}=0.53 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.26 \mathrm{e}^{-3}$

Table 4
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right.$) for (IV).

$\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$2.665(1)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$2.274(2)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$1.969(2)$	$\mathrm{O} 1-\mathrm{C} 1$	$1.259(3)$
$\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$	$1.965(2)$	$\mathrm{O} 2-\mathrm{C} 1$	$1.254(3)$
$\mathrm{Cu} 1-\mathrm{O} 3$	$1.973(2)$	$\mathrm{O} 3-\mathrm{C} 6$	$1.258(3)$
$\mathrm{Cu} 1-\mathrm{O} 4^{\mathrm{i}}$	$1.959(2)$	$\mathrm{O} 4-\mathrm{C} 6$	$1.251(3)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$	$167.3(1)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$125.3(2)$
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 4^{\mathrm{i}}$	$166.9(1)$	$\mathrm{O} 3-\mathrm{C} 6-\mathrm{O} 4$	$124.3(2)$

Symmetry code: (i) $-x, 1-y, 1-z$.

Compound (V)

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{Si}\right)_{4}\right]$
$M_{r}=652.00$
Monoclinic, $P 2_{1} / a$
$a=10.288(6) \AA$
$b=24.692(5) \AA$
$c=13.116(5) \AA$
$\beta=97.71(4)^{\circ}$
$V=3302(2) \AA^{3}$
$Z=4$

[^0]
Data collection

Rigaku AFC-7R diffractometer ω scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.852, T_{\text {max }}=0.929$
7986 measured reflections
7574 independent reflections
3260 reflections with $I>1.5 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.042 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-13 \rightarrow 0 \\
& k=0 \rightarrow 32 \\
& l=-17 \rightarrow 17 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 150 \text { reflections } \\
& \quad \text { intensity decay: } 1.4 \%
\end{aligned}
$$

Refinement

Refinement on F
H -atom parameters not refined
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.00212\left|F_{o}\right|^{2}\right]$
$(\Delta / \sigma)_{\max }=0.003$
$\Delta \rho_{\max }=0.78 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.60 \mathrm{e}^{-3}$
$w R=0.100$
$S=1.484$
3309 reflections

247 parameters

During the data collection of (II), an intensity decay of 10.1% was observed and was corrected for based on the standard reflections.

In (II), there is an orientational disorder of the 2-methylpyridine ligand. The site-occupation factors of $\mathrm{N} 1, \mathrm{C} 12$ and C13 were assumed to be 100%, and the remaining four C atoms are either of two sets of positions, ($\mathrm{C} 11, \mathrm{C} 14, \mathrm{C} 15, \mathrm{C} 16)$ or (C17, C18, C19, C20), with 50% probabilities. The max $/ \mathrm{min}$ ratio of the atom displacement parameters are abnormally large for the methyl-C atoms of the trimethylsilyl groups, which may be due to the librational and rotational disorder. To avoid insufficient convergence in the refinement of (V), all 12 terminal methyl-C atoms were refined isotropically.

Table 5
Selected geometric parameters $\left(\AA,^{\circ}\right)$ for (V).

$\mathrm{Cu} 1-\mathrm{Cu} 2$	$2.618(2)$	$\mathrm{Cu} 2-\mathrm{O} 8$	$2.003(6)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$1.988(6)$	$\mathrm{O} 1-\mathrm{C} 1$	$1.25(1)$
$\mathrm{Cu} 1-\mathrm{O} 3$	$1.916(7)$	$\mathrm{O} 2-\mathrm{C} 1$	$1.28(1)$
$\mathrm{Cu} 1-\mathrm{O} 5$	$1.997(6)$	$\mathrm{O} 3-\mathrm{C} 6$	$1.26(1)$
$\mathrm{Cu} 1-\mathrm{O} 6^{\mathrm{i}}$	$2.291(6)$	$\mathrm{O} 4-\mathrm{C} 6$	$1.25(1)$
$\mathrm{Cu} 1-\mathrm{O} 7$	$1.950(6)$	$\mathrm{O} 5-\mathrm{C} 11$	$1.24(1)$
$\mathrm{Cu} 2-\mathrm{O} 2$	$1.892(6)$	$\mathrm{O} 6-\mathrm{C} 11$	$1.28(1)$
$\mathrm{Cu} 2-\mathrm{O} 4$	$1.970(7)$	$\mathrm{O} 7-\mathrm{C} 16$	$1.27(1)$
$\mathrm{Cu} 2-\mathrm{O} 6$	$1.935(6)$	$\mathrm{O} 8-\mathrm{C} 16$	$1.25(1)$
$\mathrm{Cu} 2-\mathrm{O} 7^{\mathrm{ii}}$	$2.261(6)$		
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 5$	$159.0(3)$	$\mathrm{Cu} 1-\mathrm{O} 7-\mathrm{Cu} \mathbf{c}^{\mathrm{i}}$	$101.3(2)$
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 7$	$178.5(3)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$124.2(9)$
$\mathrm{O} 2-\mathrm{Cu} 2-\mathrm{O} 6$	$178.0(3)$	$\mathrm{O} 3-\mathrm{C} 6-\mathrm{O} 4$	$124.1(9)$
$\mathrm{O} 4-\mathrm{Cu} 2-\mathrm{O} 8$	$158.0(3)$	$\mathrm{O} 5-\mathrm{C} 11-\mathrm{O} 6$	$123.5(9)$
$\mathrm{Cu} 1-\mathrm{O} 6^{\mathrm{i}}-\mathrm{Cu} 2^{\mathrm{i}}$	$100.7(2)$	$\mathrm{O} 7-\mathrm{C} 16-\mathrm{O} 8$	$123.4(8)$

[^1]The magnetic susceptibilities over the temperature range 80-300 K were determined by the Faraday method at Saga University. The procedure for determining the $-2 J$ value from cryomagnetic data based on the Bleaney-Bowers equation is described elsewhere (Harada et al., 1997).

For all compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993); cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: local programs for (I) and (III); TEXSAN (Molecular Structure Corporation, 1998) for (II), (IV) and (V). Program(s) used to solve structure: CRYSTAN-GM (Edwards et al., 1996) for (I) and (III). Program(s) used to refine structure: CRYSTAN-GM for (I) and (III); TEXSAN for (II), (IV) and (V). Molecular graphics: CRYSTAN-GM for (I) and (III). Software used to prepare material for publication: CRYSTAN-GM for (I) and (III); TEXSAN for (II), (IV) and (V).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OA1095). Services for accessing these data are described at the back of the journal.

References

Cambridge Structural Database (1999). Version 5.17. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England.
Coppens, P., Leiserowitz, L. \& Rabinovich, D. (1965). Acta Cryst. 18, 10351038.

Edwards, C., Gilmore, C. J., Mackay, S. \& Stewart, N. (1996). CRYSTAN-GM. Program for the Solution and Refinement of Crystal Structures. Version 6.3. MacScience Co. Ltd, Yokohama, Japan.
Goto, M., Kani, Y., Tsuchimoto, M., Ohba, S., Matsushima, H. \& Tokii, T. (2000). Acta Cryst. C56, 7-11.

Harada, A., Tsuchimoto, M., Ohba, S., Iwasawa, K. \& Tokii, T. (1997). Acta Cryst. B53, 654-661.
Kato, M. \& Muto, Y. (1988). Coord. Chem. Rev. 92, 45-83.
Molecular Structure Corporation (1993). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1998). TEXSAN. Single Crystal Structure Analysis Software. Version 1.9. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Muto, Y., Sasaki, A., Tokii, T. \& Nakashima, M. (1985). Bull. Chem. Soc. Jpn, 58, 2572-2576.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Steward, O. W., McAfee, R. C., Chang, S. C., Piskor, S. R., Schreiber, W. J., Jury, C. F., Taylor, C. E., Pletcher, J. F. \& Chen, C. S. (1986). Inorg. Chem. 25, 771777.

Uekusa, H., Ohba, S., Tokii, T., Muto, Y., Kato, M., Husebye, S., Stewart, O. W., Chang, S.-C., Rose, J. P., Pletcher, J. F. \& Suzuki, I. (1992). Acta Cryst. B48, 650-667.
Yamanaka, M., Uekusa, H., Ohba, S., Saito, Y., Iwata, S., Kato, M., Tokii, T., Muto, Y. \& Steward, O. W. (1991). Acta Cryst. B47, 344-355.

[^0]: $D_{x}=1.312 \mathrm{Mg} \mathrm{m}^{-3}$
 Mo $K \alpha$ radiation
 Cell parameters from 25
 reflections
 $\theta=10-15^{\circ}$
 $\mu=1.468 \mathrm{~mm}^{-1}$
 $T=298 \mathrm{~K}$
 Plate-like, blue-green
 $0.3 \times 0.1 \times 0.05 \mathrm{~mm}$

[^1]: Symmetry codes: (i) $x-\frac{1}{2}, \frac{1}{2}-y, z$; (ii) $\frac{1}{2}+x, \frac{1}{2}-y, z$.

